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Executive Summary 
 
 

a. The cost efficiency of Air Navigation Service Providers (ANSPs) is an important 
element in the development of an efficient Single European Sky. Each ANSP 
serves an individual airspace and in so doing is a natural monopoly. Since there 
is little direct competition in the market, efficiency is not encouraged by sound 
competitive pressure.  

b. Benchmarking can provide a useful substitute for such settings. Benchmarking 
allows to identify best practices, and if ANSPs are asked over time to adjust to 
best-practice levels, their cost efficiency will converge as if they are working in 
a competitive setting. Hence, instead of competing in the market, it is possible 
to create pseudo competition via benchmarking-based regulation, whereby the 
ANSPs compete via a model.  

c. Two such benchmarking models are implemented and the results are 
subsequently combined. One is based on data envelopment analysis (DEA) 
and another on stochastic frontier analysis (SFA). They may be combined in 
different ways (minimum or maximum estimated scores or an average between 
the measures) and across different time periods in order to determine cost-
efficiency targets.  

d. The report analyzes en-route activities only rather than gate-to-gate provision. 
En-route provision has remained a monopolistic service provided by a single 
ANSP in each Member State (with the only exception being MUAC).  

e. We present the Union-wide estimated efficiency scores after accounting for 
negative externalities (i.e., delays) and the operational environment (i.e., 
variability (seasonality), and complexity).  

f. Union-wide, the DEA model presents estimated efficiency levels of 
approximately 79%, while the SFA model estimates efficiency levels of 89%. 
The weighted average therefore suggests potential efficiency levels of 84%.  

g. We find that the ANSPs could save just under one billion euros annually by 
adjusting to best practices (based on the 2019 PPP-adjusted costs). However, 
there are substantial differences in potential cost saving levels across the 
individual ANSPs. It is therefore natural to work not only with a general cost 
reduction requirement that captures technological progress, but also to work 
with additional individual requirements encouraging the less efficient ANSPs to 
catch-up to best practices.  

h. It is noteworthy that there seems to be a significant reduction in efficiency 
between RP1 (covering 2012 to 2014 inclusive) and RP2 (covering 2015 to 
2019). Concerns are also raised over the reporting of capital expenditures, 
suggesting the possibility of some data manipulation or gaming, which presents 
a challenge for the regulatory authorities. In setting the x% savings target for 
the RP4 period, it is important to guarantee that the 1% annual cost efficiency 
improvements realized over the eight years analyzed is not negated in the 
process. 
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1. Introduction 
 

1.1. The task of the academic group (AG) is to provide advice to the Performance 
Review Body (PRB) on target setting for cost efficiency for Reference Period 
4 (RP4, years 2025-2029).  

1.2. The object of this document is to provide a report and a model to the PRB with 
meaningful and scientifically robust Union-wide targets on cost efficiency on a 
benchmarking of ANSPs from the efficient cost frontier based on proven 
models. These targets take into account the estimates of inefficiency provided 
by the AG. 

1.3. The document reports the data analysis by the AG, the steps implemented to 
construct the variables for the empirical analyses, the models estimated to 
study the Union-wide efficiency of ANSPs, the descriptive statistics regarding 
the variables included in the empirical analyses, and the set of results 
assessing ANSP efficiency during the period of observation. Finally, we 
suggest a possible range of improvements relevant for RP4.  

1.4. The Academic Group has been tasked with delivering a report and modeling 
methodologies to the PRB, offering scientifically robust benchmarking of 
ANSPs' cost efficiency. 
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2. Cost efficiency 
 

2.1. The principle of cost efficiency is broadly employed in business management 
and regulatory agencies. Intuitively, the concept revolves around the capability 
of producing a specified volume of product or service at the lowest possible 
cost. This practice ensures that a company optimizes its resources and avoids 
wastage. In effect, any increase in costs implies expenses exceeding what is 
deemed necessary. For this reason, in the realm of business management, the 
objective of cost minimization is continuously monitored and assessed, utilizing 
a variety of tools. 

2.2. The costs of a business are tied to the acquisition of factors necessary for the 
production of a good or service. Consequently, management strategies aim to 
monitor the costs by checking the utilization of production factors, also referred 
to as inputs, according to economic theory. 

2.3. Inputs utilized by a company encompass a wide range of elements, including 
personnel, facilities, buildings, computers, energy, raw materials, etc. For 
purposes of simplification, economic theory generally groups them into two 
broad categories: labor and capital. Inputs that are exhausted after usage fall 
under the labor classification, for example an hour of work once performed is 
irrecoverable. The consumption of 10 kWh of electricity cannot be reused. 
Conversely, the capital category includes all inputs that are not immediately 
depleted upon usage. Examples of capital inputs include computers, buildings, 
plants, radars, etc. However, the capital goods will gradually become obsolete 
over time, necessitating maintenance or upgrades, and eventually 
replacement, for example with newer generation models over time. 

2.4. In business management, monitoring is typically conducted using simple, 
easily calculable indices that are quickly updated. These are the key 
performance indicators (KPIs), which are usually calculated and monitored 
according to the two broad input categories described above. 

2.5. In the context of the labor production factor, KPIs are typically calculated based 
on the product per employee, or the product per hour worked, etc. A similar 
process is undertaken, albeit less frequently, for the capital factor of production. 
A common KPI in this case is the volume of product produced per hour of use 
of the facility, or by the value of the fixed assets indicated in the financial 
statements. In terms of cost efficiency, a typical KPI is the labor cost per full-
time equivalent employee. 

2.6. While these KPIs are extensively utilized by managers, they do present an 
issue: they represent partial measures of efficiency. They concentrate on a 
single input and neglect the contribution of the other input to production. For 
example, one firm may have lower unit labor costs than another, thereby 
appearing more efficient. However, this may be attributable to a larger 
endowment of capital, which increases the volume of output, rather than higher 
worker productivity. If one also considers the capital endowment, it could reveal 
that the second firm is more efficient than the first. 
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2.7. For this reason, the correct measure for calculating cost efficiency is based on 
methods that take into account all production factors. In order to estimate 
whether an ANSP is carrying out the activity cost-effectively, a computational 
method is therefore needed that takes into account both categories of inputs, 
i.e., labor and capital, the volume of output that is produced, and whether this 
is achieved at minimum cost.  

2.8. This method incorporates two dimensions: the costs of the company are 
determined by the expenditure on production factors, namely the cost of labor 
and the cost of capital. The first dimension therefore concerns whether the 
firm's labor and capital endowment are the minimum necessary to achieve a 
specific volume of output. In economic theory, this dimension is called technical 
efficiency, and is represented in Figure 1. The second dimension involves the 
optimal mix of labor and capital, according to their individual prices. This is 
referred to as cost efficiency, and is represented in Figure 2. 

Technical efficiency 

2.9. The initial step in determining technical efficiency is to establish the level of 
output. This is represented by the isoquant, which illustrates the combinations 
of labor (L) and capital (K) that could potentially be sufficient to produce the 
target level of production, such as the number of flight hours controlled in a 
year. The second step involves identifying the ANSPs position with respect to 
the isoquant. In Figure 1, two ANSPs are depicted, one with a black dot and 
the other with a red dot. The black dot lies on the isoquant, suggesting that the 
ANSP operates relatively efficient. Conversely, the red dot is located above the 
isoquant, indicating that the ANSP is producing the same number of controlled 
flight hours as the black dot ANSP but utilizes more labor and capital. This is 
indicative of technically inefficiency. The level of technical inefficiency may be 
estimated by the vertical segment projecting the red dot onto the isoquant. 

Cost efficiency 

2.10. The second step consists of estimating cost efficiency, as shown in Figure 1. In 
this figure, we depict three ANSPs as black, red and blue dots. The target level 
of production is identified by the isoquant (as in Figure 1), and an isocost 
function is also depicted. The isocost is depicted as a straight line, which 
represents all possible input combinations that yield the same cost. The 
gradient of the isocost function is determined by the cost of labor and the cost 
of capital, where the former is given by the price of labor times the amount of 
labor used by the ANSP, and the latter by the price of capital times the amount 
of capital available. Hence, cost efficiency takes into account the costs of the 
inputs. 

2.11. In Figure 2, three isocost lines are illustrated, one in bold and two in dashed 
lines. The bold line, extending from the origin of the graph towards the top right, 
indicates the lowest cost, while the two dashed lines signify higher costs. 
Hence, the ANSP represented by the blue dot incurs the highest cost because 
the isocost line passing through it is the highest. The ANSP denoted by the 
black dot is cost-efficient for two reasons. First, it is technically efficient i.e., it 
lies ON the isoquant. Second, it operates at minimum cost because, given the 
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price levels of the inputs (denoted by the slope of the isocost line), it employs 
the optimal combination of inputs to produce the target output, i.e., it is located 
on the isocost line tangent to the isoquant. The blue-dot ANSP is technically 
efficient, as it lies on the isoquant, meaning it is not using more inputs than 
necessary to meet the output target. However, it is not utilizing the best 
combination of inputs relative to their prices. The isocost line passing through 
the blue dot intersects the isoquant, indicating that this dashed-line isocost is 
higher than the bold one. Thus, the blue-dot ANSP is technically efficient but 
cost-inefficient, i.e., it is not operating at minimum costs. The measure of its 
cost inefficiency is indicated by the vertical segment in Figure 2. The red-dot 
ANSP is both technically and cost inefficient because it lies above the isoquant, 
and the isocost line passing through it is highest. 

2.12. The definition of cost efficiency provided by economic theory implies that the 
ANSP selects the input mix (i.e., the combination of labor and capital) that yields 
the minimum expenditure for the required level of operations, given the current 
level of input prices.  

 
 
 
 

 
Figure 1 - Technical efficiency 
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Figure 2 - Cost efficiency 

 
 
From data to cost functions 
 

2.13. Estimates of ANSP cost efficiency are obtained from the observed data, 
including input quantities, output, input prices and other factors that may 
influence the ability of the ANSPs to operate at the minimum level of costs, as 
depicted in Figure 3. 

2.14. Operations may be influenced by exogenous factors that are beyond the control 
of management. Such factors include the possible presence of random shocks, 
such as striking air traffic controllers in another country or a volcanic eruption. 
Furthermore, non-random factors may impact the ability of management to 
minimize costs, such as seasonality which necessitates adequate staff and 
capital levels to handle peak traffic during specific periods of the year. Finally, 
the quality of management also influences costs, as it impacts the level of effort 
required to attain the minimum cost level. It is important to note that only this 
last component signifies true cost inefficiency. 

2.15. The methodology outlined in Figure 3 is applied to the observed variables 
describing the ANSPs operations. Since these data points pertain to costs, they 
require standardization. This is necessary as costs are measured in different 
currencies and span various time periods that may be affected by inflation. 
Moreover, the purchasing power of different ANSPs must be considered due to 
variations in input prices across different countries.   

 



 11 

 
 
Figure 3 - Cost efficiency model 

 
Regulatory benchmarking 
 

2.16. The evaluation of cost-efficiency is a common objective in regulated sectors. In 
these sectors, public agencies regulate the market due to the potentially 
significant market power of a company. Regulated sectors are characterized by 
the presence of natural monopolies, i.e., single companies that control the 
entire market. ANSPs, in fact, are local natural monopolies. They are the sole 
organizations that control air traffic in a specific country or territory. In other 
sectors, such as electricity transmission, gas, water, telecommunications and 
transport networks, activities are typically concentrated in the hands of a small 
number of companies due to economies of scale. In these sectors, costs are 
characterized by a high proportion of fixed costs, leading to decreasing unit 
costs. By centralizing all activity within a single firm, the provision of various 
products or services are achieved at the lowest unit costs. 

2.17. To prevent monopolies from reducing production and/or inflating prices due to 
the lack of competition, regulatory agencies oversee the costs of the company 
by defining supply prices, also known as tariffs. These regulatory bodies ensure 
that the tariffs cover production costs while also providing a reasonable return 
on invested capital. For the purposes of tariff setting, regulatory agencies need 
estimates of the levels of cost-efficiency of such natural monopolies. This is 
necessary for achieving two objectives. First, to establish tariffs that ensure a 
reasonable level of quality. Second, to incentivize cost-inefficient monopolies to 
exert effort towards achieving efficiency. 

2.18. There are multiple regulatory methods, including cost-plus regulation, price cap 
regulation, yardstick competition and concessions through auctioning. 

2.19. Cost-plus regulation is based on the idea that the regulated monopoly should 
only reach the break-even point where the regulated price (the tariff) is equal to 
the average costs (Alexander and Irwin, 1996). In this case the regulatory 
agency must know the economic costs of the monopolist, including the 
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opportunity cost of capital invested. The regulation model is such that the tariff 
is computed by aggregating two elements: (1) the average monetary costs, 
observed from operations, and (2) a fair rate of return on the capital invested. 
The cost-plus method does not provide strong incentives toward cost efficiency. 
The management knows that any cost level will be covered by the tariff and has 
no strong incentive to reduce costs by cutting inefficiencies. Furthermore, 
increasing investments will also be covered by the tariff through the granted 
return on the capital. Hence, the cost-plus regulation model leads to over-
investment. 

2.20. Price cap regulation is a different approach in which the regulatory agency sets 
the price levels that the monopolist can charge over the next four to five years 
(Alexander and Irwin, 1996). The pattern of prices decreases over the 
subsequent years, providing the monopolist with an incentive to reduce its 
costs. Moreover, if the monopolist reduces costs beyond that defined by the 
regulatory body, it will gain profits. For example, if the price in a given year is 
3% lower than the previous year, and the costs are decreasing by 5%, the 2% 
difference translates into an increased surplus for the monopolist. This 
perspective fosters efficiency and innovation incentives. However, there is a 
downside because the monopolist has an incentive to cut costs, which may lead 
to under-investment. 

2.21. Yardstick competition is a price regulation scheme in which the regulated price 
established for a given firm is derived from the cost structure of similar firms 
operating in different niches (Shleifer, 1985). The approach requires extensive 
data and can be challenging to implement because identifying comparable 
benchmarks may prove difficult. 

2.22. The final model of regulation is based on auctions. The regulatory agency 
grants the right to manage a sector for a specified period of time to the company 
that wins the auction based on the best bid. The auction can be designed in 
different ways, such as the English style (where the winner is the one who 
places the highest bid in an ascending order auction), the Dutch style (which is 
similar to the English auction, but with bids in descending order), the first-price 
sealed-bid (where the winner is the one who places the highest bid in a scenario 
where each firm places a single bid confidentially), and the second-price 
sealed-bid auction (Vickrey, 1961), in which the winner is the one with the 
highest bid but pays the second highest price offered. Concessions through 
auctions are typically implemented for long-term periods, such as 20 or 30 
years. It is noteworthy that auctions are now being used at various airports 
across Europe for the selection of a terminal ANSP provider. 

2.23. The regulatory model promoting cost efficiency in the Union-wide ANSP sector 
presently utilizes a price cap approach. This approach dictates an annual 
percentage of inefficiency that must be addressed. The incentive aspect of the 
ANSPs' regulatory framework sets a target for an annual percentage reduction 
in costs over the five year review period. 
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3. Empirical methods 
 
 

3.1. Benchmarking methods, and in particular Data Envelopment Analysis (DEA) 
and Stochastic Frontier Analysis (SFA), have become well-established and 
informative tools for economic regulation. DEA and SFA are now routinely used 
by European regulators to set reasonable revenue and price caps for energy 
transmission and distribution system operators for example. The application of 
benchmarking in regulation, however, requires specific steps in terms of data 
validation, model specification and outlier detection that are not systematically 
documented in open publications. 

3.2. We note that the Performance Review Unit (PRU) of Eurocontrol has been 
collecting data systematically on ANSP services since 2002. Furthermore, 
since year 2012, Member States submit cost data to the European 
Commission as defined by the Single European Sky (SES) framework. 
Substantial work on data verification is undertaken, leading to the likelihood 
that the information for the timeframe analyzed (2012 to 2019 inclusive) should 
be reasonably reliable. 

3.3. In this chapter, we explain the modern foundations for frontier-based 
regulation, and we discuss its use in the present project aimed at regulating 
en-route ANSP charges. 

Benchmarking 

3.4. In the business world, benchmarking is traditionally thought of as a managerial 
tool that helps improve performance by identifying and quantifying the impact 
of applying best documented practice. Managers compare the performance of 
their respective organizations, products and processes externally with 
competitors and best-in-class companies and internally with other operations 
within their own organizations that perform similar activities. 

3.5. The idea of best practice is important. In benchmarking the idea is not to 
compare existing organizations to some theoretical ideal or green-field 
solution. Rather, the idea is to use best realized practice as the benchmark. 
This naturally implies that the benchmarking targets are achievable, relative to 
the comparators and evolving from the action of the firms. Consequently 
benchmarking in both models applied here are reasonably conservative since 
they estimate only relative efficiency. 

Key Performance Indicators 

3.6. Traditionally benchmarking focuses on key performance indicators (KPIs). 
KPIs are ratio numbers that are assumed to reflect the purpose of the ANSP in 
some essential way. KPIs are widely used by operators, shareholders, 
regulatory agencies, researchers and others with an interest in performance 
evaluation. Well-known KPIs are related to the analysis of financial accounts. 
They include indicators like Return on Investments (=net income/total assets), 
gross margin, etc. 
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3.7. Unfortunately, the use of KPIs has its limits. First, when we compare a small 
ANSP to a large ANSP on a ratio (say support staff cost per flight hour 
controlled), we implicitly assume that we can scale input and output 
proportionally. That is, we assume constant returns to scale. A second 
limitation of the KPI approach is that it typically involves only partial 
evaluations. One KPI seldom reflects the purpose of the ANSP. We may have 
multiple inputs and outputs and therefore form several output-input ratios each 
of which provides an incomplete representation of the ANSP. KPIs in this case 
do not account for substitution between inputs and between outputs. 

3.8. A third limitation is that KPIs seldom capture the allocation properly. One ANSP 
may be better in all conceivable sub-processes and still be inferior by relying 
more on the relatively less efficient processes. 

Model based 

3.9. For these reasons, advanced benchmarking is model based. We try to account 
for multiple effects that may interact in complicated ways. To handle this, we 
use a systematic approach to the ANSP. An ANSP is seen as a transformation 
of multiple resources into multiple products and services. The transformation 
is affected by non-controllable factors as well as by non-observable skills 
deployed and efforts made within the organization. The idea is to measure the 
inputs, outputs and non-controllable factors and hereby to evaluate the 
managerial characteristics, like skills and effort. Note that in benchmarking, we 
usually think in economic production terms, and we refer to different 
performance dimensions as inputs and outputs. Non-controllable factors are 
also often thought of as special non-controllable inputs and outputs depending 
on whether they facilitate or complicate the production process. 

Frontier methods 

3.10. In the scientific literature, different state-of-the-art estimation techniques have 
been presented. The best-practice methods go under the name of frontier 
analysis methods, as they combine the best-practice observations to form a 
continuous frontier towards which any observation can be gauged. A taxonomy 
of these methods is illustrated in Table 1 below. 

 Deterministic Stochastic 

Parametric 

Corrected Ordinary Least Squares 

(COLS) 

Aigner and Chu (1968), Lovell 

(1993), Greene (1990, 2008) 

Stochastic Frontier Analysis (SFA) 

Aigner et al. (1977), Battese and 

Coelli (1992), Coelli et al. (1998a) 

Non-

Parametric 

Data Envelopment Analysis (DEA) 

Charnes et al.(1978), Deprins et al. 

(1984) 

Stochastic Data Envelopment 

Analysis (SDEA) 

Land et al. (1993), Olesen and 

Petersen (1995), Fethi et al. (2001) 
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Table 1 - State of the art frontier methods 

 
3.11. The different estimation methods used for benchmarking are basically 

suggestions for how to compare individual observations, as illustrated by the 
dots (ANSPs) in Figure 4 below, given the relationships between input costs 
and outputs. 

 

Figure 4 – Multiple estimation methods 

 
3.12. The most frequently applied methods are Data Envelopment Analysis (DEA) 

and Stochastic Frontier Analysis (SFA) methods (see Bogetoft and Otto (2011) 
for a full review). Both approaches have their advantages and disadvantages. 
In this project, we therefore apply both. 

Efficiency measures 

3.13. The most frequently applied methods are Data Envelopment Analysis (DEA) 
and Stochastic Frontier Analysis (SFA) methods (see Bogetoft and Otto (2011) 
for a full review). Both approaches have their advantages and disadvantages. 
In this project, we therefore apply both. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑠𝑡𝑠
 

3.14. A cost efficiency measure of, for example, 90% suggests that the ANSP could 
have produced the same services spending only 90% of its real costs. In other 
words, there is a savings potential of 10% of the benchmarked cost. 

3.15. The relationship to potential savings is illustrated in Figure 5. 

DEA OLS, 
Accounting

SFA

Output

Cost

COLS
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Figure 5 - Efficiency measurement 

 
The benchmarking process 

3.16. The development of a regulatory benchmarking model based on international 
comparisons is a considerable task due to the diversity of the ANSPs involved 
and the procedural constraints. In this section, we shall highlight some of the 
typical steps of a regulatory benchmarking analysis and we shall discuss what 
creates a good benchmarking model. Some of the important steps in a careful 
benchmarking exercise include the following. 

3.17. Choice of variable standardizations: opting for appropriate accounting 
standards, cost allocation guidelines, inclusion/exclusion criteria, asset 
definitions, and operating standards is crucial to obtain a consistent data set 
from ANSPs with varied internal practices. 

Choosing a good model 

3.18. Choice of variable aggregation: Selection of aggregation parameters, such as 
interest and inflation rates, is necessary for determining standardized capital 
costs. Additionally, identifying relevant combined cost drivers, possibly through 
engineering information, helps streamline and reduce the complexity of 
pertinent data. 

3.19. Initial data cleaning: Data collection is an iterative process where definitions are 
likely to be adjusted and refined and where data collected are constantly 
monitored by comparing simple KPIs across ANSPs and using more advanced 
econometric outlier detection methods. 

3.20. Average-cost model specification: To complement expert and engineering 
model results, econometric model specification methods can be used to 
investigate which cost drivers / ANSP services best explain average cost. This 
can be useful to estimate the variability of the data, to validate the fit on the 
model specification to data and to determine how many cost drivers are 
necessary. 
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3.21. Frontier model estimations: To determine the relevant best practice model using 
DEA and SFA models, they must be estimated, evaluated and tested on full-
scale data sets. The starting point is the cost drivers derived from the model 
specification stage, but the role and significance of these cost drivers is further 
examined in the frontier models, and alternative specifications derived from 
using alternative substitutes for the cost drivers should be investigated, taking 
into account the outlier detection mechanisms. In frontier models, special outlier 
criteria are typically used. The aim is to protect the evaluated ANSPs against a 
small number of special ANSPs, potentially deploying an incomparable 
technology or serving an incomparable context, that have an excessive 
influence on best practices. Two frontier criteria are often used in regulatory 
benchmarking. One is based on the idea of super-efficiency and says that a 
single ANSP that is doing very much better than all other ANSPs is most likely 
an outlier. The other is based on the idea of the average impact on the efficiency 
of the other ANSPs. An ANSP that has a sizable impact on the efficiency of a 
large share of the other ANSPs might also be considered an outlier. 

3.22. The choice of a benchmarking model in a regulatory context is a multiple criteria 
problem. There are several objectives, which may conflict with one another. 

3.23. Conceptual: It is important that the model makes conceptual sense both from a 
theoretical and a practical point of view. The interpretation must be easy and 
the properties of the model must be natural. This contributes to the acceptance 
of the model in the industry and provides a safeguard against spurious models 
developed through data mining and without much understanding of the industry. 
More precisely, this has to do with the choice of outputs that are natural cost 
drivers and with functional forms that, for example, have reasonable returns to 
scale and curvature properties. 

3.24. Statistical: It is, of course, also important to discipline the search of a good 
model with classical statistical tests. We typically seek models that have 
significant parameters of the right signs and that do not leave large unexplained 
variation. At the same time, there must be a balance between the complexity of 
the model used and the sample size. In statistical approaches, this is the 
question of degrees of freedom. In a DEA context, there are less guidance 
although some rules of rules-of-thumb has been proposed. One is to require a 
sample of size of at the very least 3*(number of inputs + number of outputs) 
and (number of inputs)*(number of outputs). With 30 observations, we should 
therefore have no more than 9 output parameters. Experience suggests 
however that this number of output parameters is exaggerated and may lead to 
models that cannot separate between the efficient and the inefficient firms. 
Another informal heuristic is to say that DEA models, since they are non-
parametric, are extremely flexible and that we therefore need at least enough 
observations to estimate a translog cost function (Coelli, 2004). With two cost 
drivers, a translog has 1+2+3 = 6 unknown parameters and with 3 cost drivers 
it has 1+3+6 = 10 unknown parameters. 

3.25. Regulatory and pragmatic: The regulatory and pragmatic criteria calls for 
conceptually sound, generally acceptable models as discussed above. Also, 
the model will ideally be stable in the sense that it does not generate too much 
fluctuation in the parameters or efficiency evaluations from one year to the next. 
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The regulatory perspective also comes into the application of the model. In 
other words, let us not forget the trivial but very important requirement to comply 
with the specific conditions laid out in the regulatory directives of the individual 
jurisdictions. 

3.26. The multiple criteria nature of model choice is a challenge. When we have 
multiple criteria, they may conflict, and this means that there is no optimal model 
that dominates all other models. We have to make trade-offs between different 
concerns to find a compromise model, to use the language of multiple criteria 
decision making, and such trade-offs can be challenged by the regulated 
parties. 

Output based cost functions 

3.27. The focus of this project is on the estimation of best practice cost functions and 
the use of these to estimate potential savings across multiple ANSPs. 

3.28. We can distinguish two types of cost functions. Output based costs function 
explain cost directly as a function of the services provided and the contexts in 
which they are provided: 

𝐶𝑜𝑠𝑡 =  𝑓(𝑂𝑢𝑡𝑝𝑢𝑡𝑠, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡) 

3.29. Price based cost functions explain costs by the outputs provided, the prices of 
input factors, and the context: 

𝐶𝑜𝑠𝑡 =  𝑓(𝑂𝑢𝑡𝑝𝑢𝑡𝑠, 𝐼𝑛𝑝𝑢𝑡 𝑝𝑟𝑖𝑐𝑒𝑠, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡) 

3.30. Both approaches have their advantages and disadvantages in a practical, 
regulatory context. The output based approach requires less data since it does 
not require data on factor prices. Factors prices are often not observed directly 
but constructed from allocated costs and measures of the physical inputs. An 
advantage of this approach is therefore that it is also less dependent on the 
cost allocation of different ANSPs and the use of these costs together with the 
number of full time equivalents to construct the prices. On the other hand, the 
output case approach does not allow us to take into account that the relative 
factor prices may be different across ANSPs and that this may explain some of 
the cost differences. Note that it is the relative price difference, not the general 
price levels (which we corrected by inflation and PPP as described below) that 
matters. If, for example, the cost of capital and the cost of labor are very 
different across the ANSPs, we would expect them to use different factor 
combinations, with one relying more on labor and the other more on capital 
inputs. The consequence of ignoring such differences in price relations might 
be that some ANSPs are held responsible for aspects of the environment that 
they cannot entirely control, namely the relative prices of factor input. For these 
reasons, the output based cost function may potentially lead to harsher 
evaluations. 

3.31. We have chosen to estimate the output based cost function using DEA and the 
price based cost function using SFA. In this way, we obtain intervals of efficiency 
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scores for each ANSP which may capture some of the methodological 
uncertainty of any benchmarking study. 

Combining DEA and SFA results 

3.32. The results from DEA and SFA could be merged in various different ways, with 
examples of every type of aggregation found in regulatory practices throughout 
Europe. 

3.33. Interval estimates could be created from the efficiency score estimated by each 
of the two methods (DEA, SFA). It would create a hopefully small band from 
which the regulator could choose an appropriate level or bound on the individual 
ANSP price. 

3.34. The minimum efficiency score, min(DEA,SFA), would be the toughest estimate 
of potential cost reduction identified by at least one of the models results. 

3.35. The maximum efficiency score between the results of the two models, 
max(DEA,SFA), could be referred to as the ‘benefit of the doubt’ regulatory 
approach. This would lead to the lowest possible cost reductions. 

3.36. Calculating the average score of the results of the two models, 
median(DEA,SFA), would balance the advantages and disadvantages of each 
model equally. This would lead to results similar to that of the interval estimates 
and is the approach that we have chosen as described in Section 6. 
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4. Data and descriptive statistics 
 

4.1. The data regarding the performance of the ANSPs have been provided and 
validated by the Performance Review Body (PRB). The AG received the data 
covering the period 2012-2021. The data includes 28 Member States plus 
MUAC. The costs considered here include the actual costs reported in the 
charging zones except for National Supervisory Authorities (NSA) and 
Eurocontrol costs. Therefore, the cost efficiency models only focus on the 
ANSPs cost base. 

4.2. The countries included are (the ANSP is indicated in parenthesis): Austria 
(Austro Control), Belgium-Luxembourg (Belgocontrol), Bulgaria (BULATSA), 
Croatia (Croatia Control), Cyprus (DCAC Cyprus), Czech Republic (ANS CR), 
Denmark (NAVIAIR), Estonia (EANS), Finland (Finavia), France (DSNA), 
Germany (DFS), Greece (HCAA), Hungary (HungaroControl),  International 
(MUAC),Ireland (IAA), Italy (ENAV), Latvia (LGS), Lithuania (Oro Navigacija), 
Malta (MATS), Netherlands (LVNL), Norway (Avinor Continental), Poland 
(PANSA), Portugal (NAV Portugal Continental), Romania (ROMATSA), 
Slovakia (LPS), Slovenia (Slovenia Control), Spain (ENAIRE), Sweden (LFV), 
Switzerland (Skyguide).  

4.3. The years 2020 and 2021 have been excluded from the empirical analyses 
due to the severe impact of the COVID-19 pandemic on the air transportation 
sector. For example, in March-April 2020, 100% of available seats were 
grounded in Europe (Andreana et al., 2021), showcasing the dramatic effect of 
COVID-19 on the industry. Additionally, current global capacity is still lower 
than that of 2019.1 Data from the Official Airline Guide (OAG) indicate that 
worldwide capacity reached 111.4 million seats in May 2023, which is still 3.6% 
lower than the same month in 20192. Relating the ANSP costs to their 
operations and traffic volumes in the years 2020 and 2021 would likely lead to 
skewed results. Therefore, the benchmarking analysis uses a dataset that 
includes only the period from 2012 to 2019 to evaluate ANSP performance. 

4.4. Most of the data are in monetary values and have been converted to euros. 
The costs of an ANSP are primarily composed of two main elements: operating 
costs (OPEX) and capital costs (CAPEX). OPEX encompasses the variable 
staff costs and other operating expenses. CAPEX, on the other hand, 
comprises the cost of capital and depreciation. The cost of capital represents 
the opportunity cost associated with investing money in air traffic control, which 
is economically linked to the return on the capital invested. Depreciation 
accounts for the necessary funds to maintain the quality of assets at a 
consistent level. Capital is estimated by the ANSP net book value. 

4.5. Much of the data draws from accounting records and therefore requires 
standardization to be comparable across ANSPs. First, data in currencies other 
than the euro must be converted to euros (the values have been calculated by 
the PRB supporting team using the average exchange rate for the year 2017 

                                                      
1 See reports on the website oag.com.  
 

https://www.oag.com/
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as a reference). Second, since purchasing power varies among the countries 
included in the analysis, all monetary values must be adjusted using a 
Purchasing Power Parity (PPP) index to account for these differences. 

4.6. Purchasing Power Parity (PPP) denotes the number of currency units required 
to buy a specific quantity of goods and services in different countries. PPPs 
can be used as currency conversion rates to convert expenditures expressed 
in national currencies into an artificial common currency, thereby eliminating 
the effect of price level differences across countries. The index has been 
estimated by Eurostat, using the average purchasing power of the EU across 
29 member states in 2020 as a reference. 

4.7. All monetary values are transformed into constant terms using a Producer 
Price Index (PPI) for each country (source: Eurostat). In general, producer 
price indices measure the average change in prices paid by domestic 
producers for goods and services sold in domestic and/or export markets 
between different time periods. The Producer Price Index is used to represent 
the cost of purchasing materials and supplies from local producers. The PPI is 
set at 100 for the base year, which is 2012. 

4.8. In summary, if a variable 𝑋 is defined in monetary terms and in a currency 
different from the euro, it is first converted to euro, and then standardized 

according to the following formula: 
𝑋/𝑃𝑃𝑃

𝑃𝑃𝐼
× 100. 

Physical production factors 

4.9. We include measures of the physical amounts of multiple production factors 
utilized by the ANSPs. We consider the working hours of air traffic controllers 
(ATCO) for this purpose (i.e., area control center air traffic control (ACC ATCO)-
hours on duty, taken from the Eurocontrol ATM Cost-Effectiveness (ACE) 
benchmarking reports).   

4.10. Output is measured by the total instrument flight rules (IFR) flight hours 
controlled by each ANSP on an annual basis, information provided in the 
Eurocontrol ACE benchmarking reports.  

Pricing factors 

4.11. The labor cost is determined by dividing staff expenses by ATCO hours, offering 
an approximation of the hourly labor rate. 

4.12. The price of capital is derived from the ratio of CAPEX to the annual sector 
opening hours of the corresponding ANSP. Economic theory posits that the 
price of capital represents the cost a firm incurs for utilizing capital, closely 
aligning with the rent paid for asset usage, including buildings. Therefore, the 
economic price of capital intrinsically links to the operational hours of an asset, 
a perspective adopted in this report. 

4.13. We also tested alternative estimations using different definitions for the price of 
capital, based on an evaluation of each ANSP's total assets provided by the 
PRB support. For example, CAPEX divided by the regulated asset base (RAB), 
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or alternatively, CAPEX divided by the net book value of the fixed assets (NBV). 
However, as depicted in  

4.14. Figure 6, the RAB trend throughout the observation period showcases 
pronounced fluctuations, particularly in France, Germany, Greece, Italy, Spain, 
and Switzerland. These variations were particularly evident towards the end of 
the timeline, coinciding with the onset of Regulatory Period 2 (RP2, 2015-19). 

 

 
 

Figure 6 – Variability in RAB of six ANSPs, 2012-19 

 

4.15. Similarly, as demonstrated in  

4.16. Figure 7, we analyzed the data using the NBV. In this scenario, even more 
ANSPs show dramatic fluctuations. The effect of these trends becomes 
significant when we consider CAPEX, which experiences a marked decrease 
towards the end of the observed period. These features render the price of 
capital, if calculated as the ratio between CAPEX and either RAB or NBV, 
statistically insignificant when we apply stochastic frontier analysis to estimate 
cost efficiency. Consequently, we chose to employ the definition of the price of 
capital given by the ratio of CAPEX over the sector opening hours, which 
performs satisfactorily in the estimation procedure.  
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Figure 7 – Variability in NBV of six ANSPs, 2012-19 

 
Negative Externalities 

4.17. ANSP operations may inadvertently result in negative externalities, often 
referred to as 'bad outputs', which lead to undesired outcomes that detract from 
the overall experience of travelers due to unforeseen extended travel times. 
Therefore, the AG also included delays in the benchmarking analysis. In an 
ideal scenario, increased delays should correlate with lower total costs because 
the ANSP does not utilize all necessary inputs to ensure punctuality. However, 
the actual impact of delays on total costs is a subject left to the empirical 
analysis. 

4.18. Since delays are considered a negative output, they are treated in such a way 
that an ANSP is penalized for higher levels of delay. The reasoning behind this 
is that an ANSP's performance is considered particularly good in terms of 
delays when this negative output is minimized. Therefore, the time lost due to 
delays is inverted in the cost efficiency estimation. This implies that the greater 
the delays attributed to an ANSP, the lower the output. Furthermore, since we 
have several instances with zero delays, this negative output variable is 

computed as follows: 
1

1+𝑑𝑒𝑙𝑎𝑦𝑠
. This approach ensures that the ratio is always 
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defined and that the ANSP's performance in this dimension ranges between 0 
and 1. 

4.19. To accurately assess the workload of each ANSP, we must take into account 
the complexity of the flight paths managed by them. To assist in this, 
Eurocontrol generates an index reflecting the complexity of each ANSP's flight 
paths on an annual basis.  

4.20. The fluctuation of traffic load over a year can also influence the relative cost 
base of an ANSP. This variability is calculated by dividing the traffic levels in the 
peak month by the average monthly traffic. Since it is not feasible to employ 
ATCOs seasonally, high variability could result in increased annual costs 
compared to an ANSP with a similar output distributed evenly throughout the 
year. Variability is computed as an index by Eurocontrol. 

4.21. Complexity and variability are characteristics of the air traffic controlled by the 
ANSPs and can be incorporated in the benchmarking analysis in different ways. 
Most commonly, they are included as explanatory variables in the inefficiency 
model or they are used to construct additional volume-based output measures 
that can be considered as outputs. In the first case, they are added to the 
estimated regression as explanatory variables. In the second case, we have 
constructed the following additional variables for the data envelopment analysis 
model:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦ℎ𝑜𝑢𝑟𝑠 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 × 𝑇𝑜𝑡𝑎𝑙_𝐼𝐹𝑅_ℎ𝑜𝑢𝑟𝑠 
 

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑜𝑢𝑟𝑠 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ×  𝑇𝑜𝑡𝑎𝑙_𝐼𝐹𝑅_ℎ𝑜𝑢𝑟𝑠 
 
Data transformation 

4.22. Table 2 presents all the variables included in the cost efficiency estimation, their 
unit of measure and description. The data draws on different sources: Reporting 
tables (costs, capital), EUROCONTROL (traffic, staff) and Eurostat (inflation, 
purchasing power parity). 
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Table 2 - Variables definition, unit of measure and description 

Descriptive statistics 

4.23. Exploratory data analysis are presented in Figure 8 and Figure 9, having been 
normalized at the base year 2012. Figure 8 depicts a consistent increase in 
flight hours-controlled by upwards of 20% compared to 2012, and similar 
patterns are observed for IFR flights per ANSP. 

4.24. Sector opening hours remain relatively constant from 2012 to 2015, increase 
between 2015 and 2017 and then decrease slightly, leading to an overall 7% 
percentage increase between 2012 and 2019. 

4.25. Complexity in managing flight traffic control gradually increases over the 
timeframe by about 15%, whilst variability remains relatively constant over the 
same timeframe. 

4.26. Delays increase over three-fold by 2018 and decrease slightly in 2019. In order 
to visualize the bad output, it is necessary to use a two-scale plot. The scale of 
the delays index is shown on the right of the graph in Figure 8. At the end of the 
period the increase is approximately 300%. 

Description/ComputationUnit of MeasureVariable

Total IFR flight-hours controlled by ACC (aggregated at ANSP level)hoursFlight HoursOutput

Normalized by average euro exchange rate 2017000€

Staff costs

Costs
Other operating costs

Depreciation

Cost of capital

StaffhoursACC ATCO-hours on dutyStaff

Sum of sector hourshoursSector opening hours

Minutes of en route ATFM delayminutesATFM delay

Explanatory 
Variables

Traffic levels in the peak month divided by average monthly trafficindexVariability score

Potential number of interactions between aircraft per flight-hour 

controlled, considering traffic density and structural index
indexComplexity score

Producer Price Index (annual growth rate)

%

PPI

Indices 
Purchasing Power Parity (EU27_2020=1)PPP
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Figure 8 - Output indices, 2012-19 

 
4.27. Figure 9 illustrates a +9% increase in total costs. Labor is quantified using the 

full-time equivalent (FTE) metric. Staff costs have increased by about 12%, 
despite a decline of about 2% in the total number of employees, which indicates 
a significant rise in wages. 

4.28. The operating costs (OPEX) index has increased by 11%. CAPEX at the end 
of the period (2019) is at the same level as the beginning year (2012), due to a 
7% decrease between 2018 and 2019.  

4.29. Hence, the observed trend at the descriptive level is that output increased more 
than costs, and that the lower increase in costs is due to constant capital costs 
whereas labor costs have risen. 
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Figure 9 - Cost indices, 2012-19 

 
4.30. Table 3 presents a summary of the data over the timeframe analyzed. 

Depreciation costs and the economic cost of capital are relatively invariant over 
time. In year 2012, about 21,700 full-time-equivalent employees worked for the 
ANSPs, which decreased until 2015 and then increased in the last years, 
leading to 21,500 by year 2019. 
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Years 2012 2013 2014 2015 2016 2017 2018 2019 

All currency in 000€ PPPd Costs 

Staff costs  3,527,512 3,486,527 3,509,171 3,598,576 3,607,221 3,673,799 3,774,476 3,932,105 

Other operating costs  886,229 880,305 900,210 875,124 867,922 885,350 912,554 961,861 

Depreciation  634,453 626,779 637,873 617,410 622,640 636,870 661,689 652,581 

Cost of capital  285,645 268,529 287,882 308,576 304,477 304,240 323,724 277,848 

Opex  4,413,741 4,366,832 4,409,381 4,473,700 4,475,143 4,559,149 4,687,030 4,893,966 

Capex  920,098 895,309 925,755 925,985 927,117 941,110 985,413 930,429 

Total costs  5,333,839 5,262,140 5,335,136 5,399,685 5,402,260 5,500,259 5,672,442 5,824,394 

  Inputs 

ATCO hours on duty 9,529,471 9,412,612 9,487,217 9,331,701 9,454,511 9,530,020 9,514,383 9,728,853 

Labor unit (FTE) 21,719 21,575 21,282 20,937 20,775 21,037 21,003 21,476 

 
Table 3 - Annual trends in ANSPs costs and labor inputs
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5. Models applied 
 
 
Data Envelopment Analysis (DEA) 

5.1. The non-parametric DEA approach uses linear programming to evaluate the 
performance of the firms or organizations. In the DEA literature is common to 
refer to the evaluated as Decision Making Units (DMUs). A DMU can be an 
observation of inputs and outputs for a firm at a given time (cross section) or 
across time periods (panel data). 

5.2. DEA does not use maximum likelihood estimation, which is common in more 
statistical approaches, to determine the underlying model. Instead, DEA is 
based on the idea of minimal extrapolation. 

5.3. In DEA, the estimate of the technology T, which is the empirical reference 
technology, is constructed as the smallest set of input-output combinations that 
contains data from the different DMUs, (xk,yk), k = 1,...,K and satisfies certain 
technological assumptions specific to the given approach. 

5.4. By constructing the smallest set that contains the actual observations, the 
method extrapolates the least. As long as the true technology T satisfies the 
regularity properties, the approximation T* that we develop will be a subset of 
the true technology. We refer to this as an inner approximation of the 
technology. By choosing the smallest set, we are making a cautious or 
conservative estimate of the technology set and therefore, also a cautious or 
conservative estimate of the loss due to inefficiency. We can say also that the 
approximation is based on best practices rather than on speculation as to what 
may be technologically feasible. A popular understanding of the property is also 
that we estimate the technology so as to present the evaluated units in the best 
possible light.  

5.5. We note that DEA is based on the implicit assumption that there is no noise in 
the data. If the data are somewhat random, due to exogenous shocks, bad 
reporting practices or ambiguity in accounting practices, the result may not be 
an inner approximation of the true possibilities.  

Assumptions of DEA models 

5.6. The basic DEA models mainly differ in the assumptions that they make about 
the technology T. The most important assumptions include free disposability 
(we can produce less with more), convexity (a weighted average of feasible 
production plans is feasible), scaling (production may be scaled) and additivity 
(the sum of two feasible production plans is feasible). 

5.7. Given the size of the data set, and our aim to discriminate among efficient and 
inefficient firms, it is useful to assume convexity. Convexity is an assumption 
that complies with standard cost and production theory and that is also invoked 
in most parametric approaches. 

5.8. With respect to returns-to-scale, we choose between the following:  
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a) Constant Returns to Scale (CRS) means that we do not believe there to be 
significant disadvantage of being small or large. 

b) Non-Increasing Returns to Scale (NIRS), sometimes referred to as 
Decreasing Returns to Scale (DRS), means that there may be disadvantages 
of being large but no disadvantages from being small. 

c) Non-Decreasing Returns to Scale (NDRS), sometimes referred to Increasing 
Returns to Scale (IRS), means that there may be disadvantages of being small 
but no disadvantages of being large. 

d) Variable Return to Scale (VRS) means that there are likely disadvantages of 
being too small and too large. 

5.9. Both conceptual reasoning and statistical tests aid in determining the 
appropriate scale assumption. The CRS assumption is the most stringent and 
results in the lowest efficiency scores. To align with the SFA translog model, we 
have chosen the VRS convex DEA model. 

5.10. Finally, we analyze the ANSPs on an annual basis in order to minimize the 
impact of noise in the data. 

Outliers 

5.11. Outlier analysis consists of screening extreme observations. Depending on the 
approach chosen (DEA or SFA), outliers may have a different impact. In DEA, 
particular emphasis is put on the quality of observations that define best 
practice. In SFA, outliers may distort the estimation of the curvature and affect 
the magnitude of the idiosyncratic error term.  

5.12. There are several possible outlier detection techniques that are relevant for 
DEA models, c.f. Bogetoft and Otto (2011) and Wilson (1993). One approach is 
to identify the number of times a DMU serves as a peer unit for other DMUs, 
peer counting. If a DMU is the peer for an extreme number of units, it is either 
a very efficient unit or there may be mistakes in the reported numbers. An 
alternative approach is the super efficiency criterion (Andersen and Petersen, 
1993; Banker and Chang, 2006). The idea is to eliminate ANSPs that are far 
outside the technology spanned by the other ANSPs.  

5.13. Applying multiple approaches, we identified MUAC as an outlier and have 
removed the ANSP from the analyses across all years, simply assuming that it 
is consistently relatively efficient. 

DEA Variables 

5.14. In the en-route model, we define five cost drivers as shown in Table 4. The total 
IFR flight hours controlled is a direct measure of workload (Flight Hours), the 
total hours that the sectors are open is the measure of the size of the operation 
and the actual and potential workload (Sector Opening Hours), the complexity 
index multiplied by IFR flights controlled is a workload measure that is corrected 
by complexity, the variability index multiplied by IFR flights controlled is a 



 31 

measure of the capacity for handling a large workload at least temporarily, and 
delays include the total minutes of delay specifically attributed to the ANSP. 

 
Table 4 - Variables in DEA model  

 
Stochastic Frontier Analysis 

5.15. The econometric approach to efficiency estimation is concerned with measuring 
the performance of firms and institutions in converting inputs to outputs. SFA 
may be applied to either cross-sectional or panel data at the firm level in order 
to estimate the relationship between inputs and outputs whilst accounting for 
exogenous factors. The latter may impact the production relationship however 
the management of the firm in general may have little to no control.  

5.16. A firm is deemed cost efficient if it minimizes the total production cost of a given 
output, which requires technical efficiency but also a mix of inputs that makes 
more intensive use of the relatively cheaper variables. After testing both Cobb-
Douglas and the more flexible translog cost function approaches, we chose the 
latter due to the higher log likelihood function values.  

5.17. Due to the existence of panel data and potential externalities, we apply the 
Battese and Coelli (1995) model, which accounts for potential 
heteroscedasticity in the decomposed error terms and the estimation of the 
impact of externalities on the inefficiency distribution. Consequently, the 
Battese and Coelli model considers environmental variables twice if necessary, 
namely within the cost function and as an explanation for the average level of 
inefficiencies (Hattori, 2002). 

5.18. From the dataset, we apply the model to the set of variables described in Table 
5, where the cost of operation index equals the producer price index (PPI). Total 
costs and prices are normalised by one of the prices in order to meet the 
homogeneity condition and we have chosen the purchase price parity (PPP) 
index accordingly. 

Model Variables 

Inputs 
Total Costs 

 
Total expenses PPP corrected 

Outputs 
Flight hours 

Sector opening hours 

Complexity*Flight hours 

Variability*Flight hours 

Delays 

 
Total IFR flight hours controlled en-route 

Total hours that sum of sectors open 

Complexity Index * flight hours controlled 

Variability Index * flight hours controlled 

Total minutes of delay annually ascribed to ANSP 

Estimation Approach  

Variable returns-to-scale 

Outlier MUAC eliminated 

Table 1: Variables included in DEA model 
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Table 5 - Variables in Stochastic Frontier Cost Function 

 
5.19. Given the translog nature of the analysis, which ensures a reasonably flexible 

cost function, all of the independent inputs are also multiplied by themselves 
and between each other. 

5.20. We implement the estimations in STATA, using the tailor-made SFPANEL 
package (Belotti et al., 2012). We tested a number of alternative specifications 
including SFA with time decay in the inefficiency term (Battese and Coelli, 1992) 
and SFA with exogenous drivers affecting the distribution of the inefficiency term 
(Battese and Coelli, 1995) and chose the latter based on the log likelihood 
values. We also note that all variables were subsequently standardized by 
dividing them by their geometric mean prior to logging the data. 

5.21. The SFA model applied to en-route air traffic control provision is presented 
below: 

ln (
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

= 𝛽0 + 𝛽1 ln(𝐼𝐹𝑅 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠𝑖𝑡) + 𝛽2 ln (
𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽3 ln (
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽4

1

2
ln(𝐼𝐹𝑅 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠𝑖𝑡) ln(𝐼𝐹𝑅 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠𝑖𝑡)

+ 𝛽5

1

2
ln (

𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

) ln (
𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽6

1

2
ln (

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

) ln (
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽7 ln(𝐼𝐹𝑅 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠𝑖𝑡) ln (
𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽8 ln(𝐼𝐹𝑅 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠𝑖𝑡) ln (
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽9ln (
𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

) ln (
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑖𝑡

𝑃𝑃𝐼𝑖𝑡

)

+ 𝛽𝑧1 ln(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖𝑡) + 𝛽𝑧2 ln(𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡)
+ 𝛽𝑧3 ln(𝑆𝑒𝑐𝑡𝑜𝑟𝑠𝑖𝑡) + 𝛽𝑧3 ln(𝑡𝑖𝑚𝑒𝑡) 𝛽𝑧3 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    

 

 

where 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) and 𝑢it~𝑁(𝛿1𝑙𝑛 (𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)𝑖𝑡+𝜏𝑖𝑡 , 𝜎𝑢

2) 
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5.22. The results of the stochastic cost function models with respect to en-route 

services are presented in Section 6. Two models are analysed, namely without 
and with a time trend variable that estimates market level changes. All cost 
elements are PPP to allow for international comparisons. All variables are 
logarithm transformed and normalized by the geometric mean.  
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6. Results 
 

6.1. In this section of the report, we present the estimates of the Union-wide ANSPs 
cost efficiency. Two models were applied in order to estimate the efficiency of 
the 29 ANSPs, namely radial, variable returns-to-scale DEA and translog SFA 
models. 

DEA cost efficiency 

6.2. The DEA model includes the variables specified in Table 4. The DEA cost 
frontier model includes a single input, total costs and four outputs: flight hours 
controlled, sector opening hours, complexityhours, and variabilityhours. We 
also estimate a second model that includes delays. 

6.3. The AG performed a systematic outlier analysis prior to applying the DEA 
models, following the method in Bogetoft and Otto (2011). The evidence is that 
in most of the annual analyses, MUAC has been identified as outlier, therefore 
it has been classified accordingly. MUAC has been assigned an efficiency 
score equal to 1, and the remaining ANSPs have been investigated and 
assigned an efficiency score based on a DEA analysis limited to 28 annual 
observations. 

6.4. The results of the DEA-VRS model without and with delays are presented in 
Table 6. The scores are cost efficiency measures, ranging from 0 to 1. For 
example, the estimated median score is equal to 0.85 in year 2019, which 
means that the estimated inefficiency score is 15%. The scores presented in 
this table are Union-wide annual median scores. Without considering delays, 
the efficiency increased in the system, moving from 61% in year 2012 to 85% 
in year 2019. During RP1, the efficiency levels remained relatively constant 
over the observed period. After a drop between the two regulatory periods, the 
relative improvement consistently increases over the five years of RP2. 

 

Year 
Without 
delays 

With 
delays 

2012 0.61 0.73 

2013 0.59 0.77 

2014 0.62 0.84 

2015 0.59 0.59 

2016 0.66 0.71 

2017 0.71 0.81 

2018 0.79 0.85 

2019 0.85 0.90 

Table 6 - DEA cost efficiency estimates without and with delays 

6.5. The scores without delays in Table 6, are lower than those with delays by 
definition. This is simply due to the additional output dimension, which enables 
ANSPs with low delay levels to improve their relative performance. If delays 
are included, the ANSPs Union-wide DEA-VRS efficiency scores increased 
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during the time interval 2012-2019, rising from 73% in year 2012 to 90% in 
year 2019. As in the previous case, there is a large drop in year 2015, at the 
beginning of RP2. The efficiency rose during RP1 (2012-14), then dropped by 
25% in 2015. Subsequently, performance improves consistently until the end 
of RP2 (year 2019). 

6.6. Figure 10 presents the distribution of the estimated efficiency scores for the 29 
ANSPs per year of observation using the DEA-VRS model with delays. The 
graph in each year is a box plot, and the bottom line of the rectangular box is 
the efficiency score located at the 25th percentile of the distribution: for 
example, in year 2012 the efficiency of the first quartile of the distribution of 
efficiency scores is equal to 40%. The line in the middle of the box is the 
median and is the efficiency score exactly in the middle of the distribution. In 
year 2012, it lies at 73%. The upper line of the rectangular box is the efficiency 
score of the upper quartile of the distribution. In year 2012, it is 100% (and it is 
the same in all following years).  

6.7. We note that the interquartile range, i.e., the vertical distance between the 
bottom and the upper line of the rectangular box has reduced across the 
timeframe. The inter-quartile range is about 60% in year 2012, and just above 
50% in year 2019. Hence, the Union-wide ANSP system has reduced the 
dispersion in the efficiency scores by the end of RP2. 

 

 
Figure 10 - Box plot distribution of DEA efficiency scores with delays 
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SFA cost efficiency 

6.8. Cost efficiency with SFA is estimated with the translog, Battese and Coelli 
(1995) model. Total costs are explained by flight hours controlled, price of labor, 
price of capital, sector opening hours, complexity and variability together with 
a time trend in Model (1). Models (2) and (3) include delays. Model (3) treats 
complexity as a determinant of inefficiency rather than an explanatory variable. 
The estimates are presented in Table 7. 

6.9. Models (1) to (3) show that flight hours controlled, and the prices of capital and 
labor, all explain total costs. Regarding input prices, the most significant values 
are labor, followed by capital in explaining overall costs. 

6.10. We note that Model (3) appears to be preferable from a statistical perspective 
because the log-likelihood value is higher. Furthermore, it has a statistically 
significant (at the 5% level) estimated coefficient for the standard deviation of 
the inefficiency error component, 𝜎𝑢, as well as the coefficient related to the 
standard deviation of the shock error component, 𝜎𝑣. Hence, inefficiency is an 
important component of the cost function error term, as required for the 
adoption of SFA. We therefore refer to Model (3) for the rest of this section. 

 

 
 

Table 7 - ANSPs cost function estimated with SFA translog model 
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SFA cost elasticities 

6.11. Since the variables are in logs and standardized by their geometric means, the 
estimated coefficients of the first degree variables, namely flight hours, capital 
price and labor price, represent elasticities. Hence, the cost elasticity of flight 
hours is equal to about 0.33%, which suggests that were the volume of hours 
of traffic controlled by an ANSP to increase by 1%, the total costs will rise by 
0.33%.  

6.12. The cost elasticity of the price of capital is 0.29%, while the cost elasticity of the 
price of labor is higher and equal to 0.56%. An increase by 1% in the price of 
capital gives rise to an increase in total ANSP costs equal to 0.29%, whereas a 
1% increase in the cost of labor will increase total costs by 0.56%. 

6.13. Longer sector opening hours also contribute significantly to the overall costs. 
The estimated coefficient is equal to 0.65 and it is statistically significant.  

6.14. Delays do not significantly impact cost efficiency for the ANSPs. The two 
estimated coefficients in Models (2) and (3) are not statistically significant. 
However, the estimated coefficient is positive. This implies that the lower the 
en-route delays, the higher is the cost to the ANSPs. In order to minimize 
delays, ANSPs may need to incur higher costs. 

6.15. Higher complexity in ASNP operations implies higher total costs. The estimated 
coefficient of complexity in Model (2) is positive and significant, equal to 0.07. 
However, Model (2) suffers from a not statistically significant, coefficient for the 
standard deviation of the inefficiency error component, 𝜎𝑢. Hence, after 
showing that complexity is a positive shifter in the cost frontier, in Model (3) we 
move complexity to be a determinant of the inefficiency error component and 
add variability as a cost function explanatory variable. The estimated coefficient 
of 𝜎𝑢 becomes positive and statistically significant, as required by SFA. 

6.16. Variability (i.e. seasonality) contributes to higher costs and is statistically 
significant at the 1% level. In Model (3), the estimated coefficient is equal to 
0.87. 

6.17. The negative time trend, whilst not significant in Model (1), is significant at the 
5% level in Models (2) and (3). This suggests that costs have decreased over 
the two reference periods by on average 1% annually. 

SFA efficiency distributions 

 

6.18. Figure 11 presents the distribution of cost efficiency scores over the period 2012 
to 2019 using the SFA Model (3) estimates. Across all years, the inter-quartile 
range is smaller than that of the results of the DEA model. Consequently, SFA 
generates less dispersion in the efficiency scores, although the 75th percentile 
is always lower than 100%.  

6.19. The SFA estimates yield Union-wide cost efficiency estimates of 83% if we do 
not consider delays (Model 1) and 88% if we include delays (Model 3). 
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Figure 11 - Box plot distribution of SFA efficiency scores including delays 

 
6.20. The SFA findings indicate that, on average over the observation period, the 

Union-wide cost efficiency is 83% without accounting for delays (Model 1), 
which rises to 88% when delays are incorporated (Model 3). 

Combining the results 

6.21. The suggested savings are based on the average cost efficiencies for the entire 
period, 2012 to 2019, and are computed as follows:   

Potential cost saving = 1 – average efficiency score. 
 

6.22. We combine the potential savings obtained by the DEA and the SFA models 
following three approaches:  

 Potential savings as the maximum value resulting from the DEA and SFA 
models  

 Potential savings as the minimum value resulting from the DEA and SFA 
estimates  

Potential savings as the average of the two sets of results  

6.23. Table 8 reports the DEA and the SFA Union-wide average estimated cost 
efficiency scores. We report two average measures: the simple average and 
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the weighted average. In this case, the weight is set by the share of each 
ANSP’s total costs on the Union-wide total costs, thus taking account of relative 
size. The results of the two models are reported across the two reference 
periods (RP) included in the observations: RP1 covering 2012 to 2014, i.e., 3 
years, and RP2 covering 2015 to 2019, i.e., 5 years. 

6.24. Table 9 presents the average potential savings for the overall period, i.e., 2012-
19. The weighted average Union-wide ANSP inefficiency score offers a more 
accurate measure for this indicator in contrast to the arithmetic mean. The 
weighted average considers the varying sizes of the 29 ANSPs, ensuring a 
balanced representation. Conversely, the arithmetic mean distorts the measure 
by equally weighing all ANSPs, a misleading estimate if the target is a 
comprehensive Union-wide inefficiency score.  

6.25. By considering the weighted average and the middle point between DEA and 
SFA, we obtain a potential savings equal to 1 – 0.84 = 0.16, i.e., a 16% cost 
reduction. For the last year only, i.e., 2019, taking into account the total costs 
for each ANSP in 2019, the average potential savings suggest that 
approximately one billion euros in costs could have been saved, of the 5.7 
billion spent by the ANSPs in the dataset based on the 2019 PPP/PPI-adjusted 
costs. 

 
DEA-VRS SFA-TL  

overall  
period 

RP1 RP2 overall  
period 

RP1 RP2 

Average 0.71 0.71 0.71 0.88 0.88 0.88 

Weighted average 0.79 0.80 0.78 0.89 0.89 0.90 

 

Table 8 - Estimated average ANSP cost efficiency 

  
Maximum Minimum Median 

Average 29% 12% 21% 

Weighted average 21% 11% 16% 

 
Table 9 - Potential cost savings Union-wide  
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7. Conclusions and recommendations 
 
Regulatory Benchmarking 

7.1. Benchmarking methods, and in particular Data Envelopment Analysis (DEA), 
and Stochastic Frontier Analysis (SFA), have become well-established and 
informative tools for purposes of economic regulation. DEA and SFA are now 
routinely used by European regulators to set reasonable revenue / price caps 
for energy transmission and distribution system operators for example.  

7.2. The cost efficiency of Air Navigation Service Providers (ANSPs) is an important 
element in the creation of an efficient Single European Sky. Each ANSP serves 
an individual airspace and in so doing is a natural monopoly. Since there is little 
direct competition in the market, efficiency is not encouraged by sound 
competitive pressure. 

7.3. Benchmarking allows us to identify best practices, and if ANSPs are asked over 
time to adjust to best-practice cost, their cost efficiency will converge towards 
the cost levels of a competitive setting. Hence, instead of competing in the 
market, we create pseudo competition via benchmarking based regulation, 
where the ANSPs compete via a model. We note that this issue is particularly 
relevant in en-route provision given the clear monopolistic status of the ANSPs.  

7.4. In this report, we develop two such benchmarking models, and we discuss how 
to combine them. One is based on data envelopment analysis (DEA) and 
another on stochastic frontier analysis (SFA). They can be combined in different 
ways (min, max, average) to determine more or less ambitious cost targets for 
each individual ANSP. 

Methodological differences across models 

7.5. Part of the variation of our results can be explained by the nature of the two 
approaches we have used. In the DEA models, all deviations from the model 
are classified as inefficiency whilst SFA uses a combination of noise and 
inefficiency to explain the deviations. 

7.6. Furthermore, the SFA model makes more assumptions ex ante, including the 
structure of the cost function and the existence of competitive prices, which may 
also be driving some of the differences in the results. 

7.7. Finally, we note that DEA, based on an envelopment frontier, has been 
estimated on an annual basis whereas the SFA model has used panel data and 
includes an estimate of changes over time. In this context, we have applied an 
average efficiency approach in the final results. 

Results 

7.8. We estimate the cost efficiency of 29 Air Navigation Service Providers (ANSPs), 
using two benchmarking models; the radial, variable returns-to-scale (VRS), 
Data Envelopment Analysis (DEA) model and the translog, Battese and Coelli 
(1995) Stochastic Frontier Analysis (SFA) model. 
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7.9. DEA Cost Efficiency: The estimated median efficiency score rose from 61% in 
2012 to 85% in 2019, indicating an improvement in cost efficiency over time. 
When accounting for delays, the efficiency score increased from 73% in 2012 
to 90% in 2019. We note that an artefact of all these models is that augmenting 
the number of variables (dimensions), will result in either a consistent or higher 
score for the individual ANSP. The results also reveal reduced dispersion in the 
efficiency scores by the end of RP2, reflecting a decrease in variability among 
ANSPs' performance. 

7.10. SFA Cost Efficiency: Total costs were largely explained by flight hours 
controlled, and the prices of capital and labor. The model indicates that a 1% 
increase in flight hours, capital prices, and labor prices would lead to a rise in 
total costs of 0.33%, 0.29%, and 0.56% respectively. Delays did not significantly 
impact cost efficiency, but indicated that minimizing delays might incur higher 
costs for ANSPs. Additionally, higher complexity and variability (seasonality) 
contributed to increased costs. 

7.11. Cost Savings: The AG finds that ANSPs could save approximately 16% of total 
costs on average by adjusting to best practices. Based on the 2019 PPP-
adjusted costs, this amounts to potential savings of just under one billion euros 
on an annual basis. Additionally, the report highlights a wide distribution in the 
efficiency scores, indicating substantial variation in the performance of different 
ANSPs.  

Recommendations 

7.12. The large variation in the performance of the multiple ANSPs suggests that a 
one-size-fits-all approach, such as implementing a universal tariff reduction for 
all ANSPs, is insufficient. Tailored strategies are necessary to address the 
specific inefficiencies of each ANSP and maximize potential cost savings. It is 
therefore natural to work not only with a general cost reduction requirement to 
capture technological progress (which is around 1% annually over the eight 
years analyzed in this report) but also to work with additional individual 
requirements encouraging less efficient ANSPs to catch-up to best practices.  

7.13. We suggest that the results could be strengthened over time. There are many 
ways to do so, including a further investigation of the cost standardization and 
the inclusion of additional cost drivers such as quality of services provided, 
including route directness. 

7.14. Ideally, all ANSPs should use the same rules for allocating shared costs 
between en-route and terminal activities (where relevant) and across cost 
categories. Moreover, the ANSPs should also use standardized depreciation 
rules which would reduce some of the noise in the data.  

7.15. Our analysis presumes that the number of ANSPs are fixed and that the 
deviation of air space between them remains unaltered. We hereby do not 
measure the possible gains or cost savings from consolidation of the Single 
European Sky. Including the United Kingdom, Canada and the United States 
may change the cost frontier and help to identify potential additional cost 
savings. 
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7.16. It is important to note that we only calculate potential savings of the less efficient 
European ANSPs adjusting to the practices of the more efficient European 
ANSPs. We do not make comparisons with air navigation services on other 
continents. 

7.17. Reports, such as those produced by the FAA and Eurocontrol3, seem to indicate 
that the US system is at least one third more efficient than Europe. In effect, an 
analysis looking for possible comparators outside of the EU could lead to a 
much higher savings potential.  

7.18. Of course, it might also be that the variation in European efficiencies is larger 
than that of the US. If this is the case, the bias from using a European 
perspective only is less important. However, the real impact of economies of 
scale would only be possible with such a comparison. 

Future Directions 

7.19. It might be of interest to investigate the possibilities of introducing competition 
for the market rather than price regulation. In terminal provision, this exists in 
Sweden, the UK, Germany and Spain. It is likely that such an application to en-
route services may lead to a more consolidated set of airspaces that achieve 
higher economies of scale. 

7.20. It is clear that the environmental issues caused by the aviation industry are of 
growing concern. According to the European Commission, each aircraft flies 49 
km longer than necessary on average4, and this data considers only horizontal 
flight paths, not the vertical descent paths. The directness of a route is likely to 
contribute to a reduction in greenhouse gas emissions in the shorter term. 
Consequently, air traffic control provision could contribute to a reduction in 
emissions by minimizing the length of flight paths through improved pre-
planning and reducing congestion and delays by better balancing demand and 
supply. Incentivizing such behavior through a hybrid price cap would likely 
reduce fuel burn in a relatively simple manner. 

 
  

                                                      
3 U.S. - Europe continental comparison of ANS cost-efficiency trends (2006-2014) (eurocontrol.int) accessed 
online on the 31st July 2023 
4 Single European Sky (europa.eu) accessed online on the 31st July 2023. 

https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/publications/other/2006-2014-US-Europe-comparison-ANS-cost-efficiency-trends.pdf
https://transport.ec.europa.eu/transport-modes/air/single-european-sky_en
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